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Affective behaviors enable social robots to not only establish better connections
with humans but also serve as a tool for the robots to express their internal states.
It has been well established that emotions are important to signal understanding
in Human-Robot Interaction (HRI). This work aims to harness the power of
Large Language Models (LLM) and proposes an approach to control the affective
behavior of robots. By interpreting emotion appraisal as an Emotion Recognition
in Conversation (ERC) tasks, we used GPT-3.5 to predict the emotion of a
robot’s turn in real-time, using the dialogue history of the ongoing conversation.
The robot signaled the predicted emotion using facial expressions. The model
was evaluated in a within-subjects user study (N = 47) where the model-
driven emotion generation was compared against conditions where the robot
did not display any emotions and where it displayed incongruent emotions.
The participants interacted with the robot by playing a card sorting game that
was specifically designed to evoke emotions. The results indicated that the
emotions were reliably generated by the LLM and the participants were able to
perceive the robot’s emotions. It was found that the robot expressing congruent
model-driven facial emotion expressions were perceived to be significantly
more human-like, emotionally appropriate, and elicit a more positive impression.
Participants also scored significantly better in the card sorting game when the
robot displayed congruent facial expressions. From a technical perspective,
the study shows that LLMs can be used to control the affective behavior of
robots reliably in real-time. Additionally, our results could be used in devising
novel human-robot interactions, making robots more effective in roles where
emotional interaction is important, such as therapy, companionship, or customer
service.

KEYWORDS

emotions, emotion appraisal, HRI, social robots, affective HRI, affective behavior, LLM,
GPT3

1 Introduction

Affective behavior, the ability to perceive and express emotions, is a fundamental
component of human communication. It is instrumental in building human relationships
(Lazarus, 2006) and decision making (So et al., 2015). Humans use facial expressions to
convey variousmeanings during interactions (Elliott and Jacobs, 2013) andwith social robots
poised to be integrated into society, it is prudent for these robots to have the ability to exhibit
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affective behavior. For robots to interact with humans socially,
they need to be able to perceive human behaviors and the
intent behind them while also expressing their understanding
and intention. Facial expressions can be used by robots to
signal their intentions and internal state. Research has shown
that robots exhibiting emotions are more likely to be perceived
as likeable (Rhim et al., 2019), intelligent (Gonsior et al., 2011),
and trustworthy (Cominelli et al., 2021) by users. Emotionally
responsive robots can adapt their behavior and responses based
on the user’s emotional states, leading to more natural and
seamless interactions between humans and robots. Emotionally
intelligent robots have the potential to enhance user experience,
facilitate effective communication, and establish stronger rapport
with humans. However, effectively modeling emotions in robots is
a challenging and active area of research. Emotions are complex,
multi-dimensional phenomena that involve a combination of
physiological, cognitive, and expressive components. Researchers
have explored both dimensional (Russell, 1980; Mehrabian, 1995)
and categorical (Tomkins and McCarter, 1964; Ekman et al., 1999)
theories of emotions to develop models for robot emotion
generation, leading to complex architectures that interpret various
stimuli to generate appropriate emotional responses (Cavallo et al.,
2018). While these models have shown promising results, they often
require hand-crafted rules and intricate feature engineering, making
them labor intensive.

The emergence of Large LanguageModels (LLMs), such as GPT-
3 (Brown et al., 2020), has significantly transformed the landscape
of natural language understanding and generation. LLMs can serve
as general models for solving a multitude of tasks. For example,
Lammerse et al. (2022) used GPT-3 to detect the emotions of
utterances in an Emotion Recognition in Conversation (ERC) task.
We aimed to harness the capabilities of LLMs to model robot
emotions, specifically to generate real-time robot emotions during
HRI (Human-Robot Interactions). In this paper, we investigate two
research questions:

• Can we use LLMs for robot emotion generation in real-time?
• Do people perceive the context appropriateness of a robot’s

emotions and what is its effect on the user?

This study implemented a model to use GPT-3.5, a state-of-the-
art LLM, to control the affective behavior of a robot. We interpreted
emotion appraisal as a real-time ERC task. We used GPT-3.5 to
predict the emotion that the robot is likely to have during real-time
interactions, based on the ongoing conversation’s dialogue history.
The predicted emotions were then translated into facial expressions,
which were displayed by the robot.

To evaluate the effectiveness of the implemented model, we
conducted a within-subjects user study involving 47 participants.
The participants engaged in an affective image sorting games, with
a robot acting as a collaborative partner. The game was designed to
evoke emotional responses from the participants. The results of the
study demonstrated the effectiveness of using GPT-3.5 in generating
emotions in real-time.

The main contributions of this work are:

• The first study (to the best of our knowledge) to showcase the
use of LLMs for emotion generation in HRI.

• A novel study design to evaluate the influence of a robot's
emotional expressions on human users in a collaborative
setting.

2 Background

Emotions can be defined as “an instantaneous affective response
to an experienced event” (Cavallo et al., 2018). Appraisal theories
aim to propose a theoretical framework to understand the cognitive
evaluations or appraisal of various stimuli that result in eliciting
specific emotions (Ellsworth and Scherer, 2003). On the other hand,
theories of emotions try to describe various emotions and discuss
the similarities and differences between them. Categorical theories
of emotions propose a set of specific emotion categories (e.g., Happy,
Sadness, Anger, Fear, Surprise, Disgust) that are elicited due to
various stimuli (Tomkins and McCarter, 1964; Ekman et al., 1999;
Izard, 2013). Dimensional theories, on the other hand, are model
emotions based on certain underlying dimensions (such as arousal
and valence) (Russell, 1980; Plutchik, 1982; Mehrabian, 1995).

For a robot to provide an appropriate affective response during
an interaction with a human user, it needs to be able to sense and
model emotions. This involves perceiving various communicative
signals (body posture, facial expression, gaze, speech, etc.) from
the human user and interpreting them. Many researchers have
used various emotion models (Russell, 1980; Mehrabian, 1995) to
interpret human emotions (Kirby et al., 2010; Cavallo et al., 2018;
Paplu et al., 2022). For example, Kirby et al. (2010) developed an
affective robot receptionist that mimicked human-like behavior by
interpreting its interaction in terms of its emotions, mood, and
attitude. Paplu et al. (2022) used the circumplex model (Russell,
1980) to generate context appropriate emotions on a robot
by appraising various communicative signals from the human
interlocutor such as proximity, body postures, facial expressions, and
gestures. A recent study (Tang et al., 2023), explored the MAP-Elites
(Cully et al., 2015) framework to generate emotional expressions
automatically for a robotics platform they developed. While these
models have shown good results in generating robot emotions,
they involve building complex architectures (in some cases even
hardware) that are effort and time intensive. Additionally, themodels
need to be fast enough to operate in real-time, which is challenging
inHRI. In this work, we limit the robot’s emotions to a subset of basic
emotions (Ekman et al., 1999) (see Section 5.1).

Out of the many modalities of information that can be sensed
and processed by a robot to generate emotions, dialogue plays a key
role in providing the necessary context. The textual representation
of a conversation can be analyzed using emotion classification
algorithms to detect the emotions of various utterances. Emotion
Recognition in Conversation (ERC) is a text classification task that
aims to predict the emotions of speakers during a conversation from
their utterances. Static ERC refers to a task where a conversation has
already taken place and utterance emotions are detected using both
the historical and future contexts (Ghosal et al., 2019; Lian et al.,
2021). On the other hand, real-time ERC refers to detecting
utterance emotions, relying only on the historical context (Jiao et al.,
2020; Ma et al., 2022). Real-time ERC is very relevant in the context
of HRI and can be used on-the-fly, while the program is running,
to appraise the emotion of a conversation between a robot and
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a human. Various works have proposed to utilize ERC models
for emotion recognition in HRI (Fu et al., 2020; Rasendrasoa et al.,
2022), however, evaluations involving genuine interactions with
robots have been notably scarce. This study appraises emotions as a
real-time ERC task to generate emotions on a robot face in response
on-the-fly.

LLMs like GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al.,
2022), andOPT (Zhang et al., 2022) have been trained on very large-
scale general text datasets (both dialogue and publicly available web
documents). They have shown impressive capabilities in solving
a variety of different tasks such as generating code (Chen et al.,
2021), translation, and question-answering (Brown et al., 2020) by
repurposing their learned knowledge. For example, Lammerse et al.
(2022) applied GPT-3 to solve an ERC task that involved extracting
emotions from interviews with children. LLMs have a great
potential for application specifically in the field of HRI. The “zero-
shot” chatting capabilities of LLMs, such as GPT-3 Brown et al.
(2020), have made designing interactions with robots very easy.
Consequently, many works have tried to integrate LLMs to solve
various HRI tasks (Axelsson and Skantze, 2023; Billing et al., 2023;
Irfan et al., 2023). Billing et al. (2023) integrated GPT-3 as a verbal
proxy onNAOandPepper robots tomodel open-dialog interactions.
In a recent work, Irfan et al. (2023) proposed guidelines for using
LLMs to develop companion robots for older adults. Others have
tried to repurpose LLMs to solve diverse HRI tasks. For example,
Axelsson and Skantze (2023) developed an architecture for presenter
robots (e.g., a museum guide) by using GPT-3 to access information
from knowledge graphs. In this work, we use GPT-3.5 to generate
robot emotions, moving beyond the domain of generating robot
speech.

3 Emotion generation using LLMs

Emotion appraisal is a continuous process where humans
process the stimuli around them against a motivation system
(Ellsworth and Scherer, 2003). Stimuli spanning various modalities
including verbal and non-verbal behaviors are processed during
the appraisal process. To generate appropriate emotional responses
for the robot in real-time, the computation time of the emotion
appraisal process must be minimized. Thus, we limited the scope of
model input for this study to only the textual representation of the
conversational context.

GPT-3 has been shown to perform strongly on various NLP
tasks in a zero-shot fashion that needs reasoning or adaptation on-
the-fly (Brown et al., 2020). We wanted to harness these capabilities
and generate ad lib robot emotions. We first interpreted robot
emotion appraisal as an ERC task. ERC takes the context of
the conversation into account when detecting the emotions of
utterances. As discussed in Section 2, LLMs have been shown to
be effective in ERC tasks. Hence, we propose to use GPT-3 for
real-time ERC, that takes the dialogue context into account when
detecting emotions. We selected GPT-3.5 [an updated GPT-3 LLM
(Brown et al., 2020)] with the model “text-davinci-003” for our
study. This was the best performing model from OpenAI when
the study was conducted. While ChatGPT was faster and had been
trained on more recent data, we found that the behavior was not
as consistent as the davinci models for our tasks. GPT-4 (OpenAI,

2023) was announced later and the API was not available yet during
the data collection.

We wanted to adapt real-time ERC as a prediction task that
predicted the emotion for the robot by taking the immediate
history of the conversation into account. For example, consider the
following dialogue (R denotes the robot, P denotes the participant,
Ux denotes the utterance number):

P: What do you think about picture 1? I think it looks really cool!
(U1)

R: The picture looks like a really beautiful painting to me. Such an
amazing sight. (U2)

A real-time ERC model could, for example, detect the emotion
followingU2 as “Happy”. In our task, wewanted to do the same using
GPT-3.5, i.e., to predict what could be an appropriate emotion for
U2 based on the conversation history (U1 and U2 taken together).
For this study, we restricted the emotions to a subset of the six basic
emotions (Ekman et al., 1999) (see Section 5.1 for more details).

We also introduced an emotion category “Neutral” that
the model could predict. This represents instances during the
conversation where there is no need to express any emotions. We
expected GPT-3.5 to be able to detect them and predict the emotion
category as “Neutral” when there was no emotion expressed in the
dialogue, even though an affective artifact (such as an affective image
discussed in Section 5.1) was being discussed as the subject of the
conversation. For example, in the following conversation, assuming
that the discussion is about the positioning of an affective image in an
image sorting task, the robot’s emotionwas predicted to be “Neutral”
by GPT-3.5 even though the subject of the conversation was an
affective image (R denotes the robot, P denotes the participant):

R: What do you think?
P: I think you are correct in that assessment. I will put it

here.⟨robot’s emotion⟩
We inserted a delay of approximately 1 s before the robot said

the next utterance (after U2 in the example). Doing so meant that
the facial expression could be displayed between the two utterances
(U2 and the upcoming utterance) and the expression felt like a
continuation of what had been discussed so far before moving to
the next utterance. Additionally, introducing the delay also gave the
robot sufficient time to send the API call and receive the predicted
emotions. We acknowledge that a delay between two sentences
where the robot just displays a facial expression is perhaps unnatural.
However, this helped in exaggerating the emotions the robot wanted
to express (see Section 5.4). As the generation time by GPT-3.5 gets
faster in the future, reducing the latency between the API calls and
responses, we can adapt the model to generate the emotions while
the robot says an utterance, eliminating the need for delays.

GPT-3.5 was instructed to perform the emotion prediction for
the robot as a completion task with the help of a prompt. We used
zero-shot prompting (Brown et al., 2020) for the task. The prompt
was divided into two sections. The first section comprised the task
description. It was asserted that the conversation was between a
robot and a human. As GPT is auto-regressive, i.e., the time taken
to generate a response is linearly correlated to the number of tokens
it has to generate, we restricted the output tokens to 1. Each emotion
class was assigned a number, and GPT-3.5 was asked to output only
the emotion class number at the end. The first half of the prompt
looked like the following:
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Prompt (Part 1) “This an emotion classifier. The following is a
conversation between a human and a robot. The robot’s emotion is
written in brackets (). The emotion can be either “Happy (1)”, “Sad
(2)”, “Fear (3)”, “Anger (4)”, “Surprise (5)” or “Neutral (6)”. Only give
the emotion class number between 1 - 6”

The second section comprised of the actual conversational
data used as the historical context for the prediction. Furhat can
store the utterances during an interaction (both the user’s and
its own) in the DialogueHistory object. Furhat’s and the user’s
utterances were extracted to construct the turn wise dialogue in the
prompt. Lammerse et al. (2022) proposed a windowing approach to
control the exact number of past dialogue exchanges to be used
as context in the ERC task and found that a window size of 3
resulted in the best accuracy for GPT-3. We introduced a variable
named contextWindowSize, which specified the number of turns
to be included as context in the prompt. For the user study (see
Section 5), the optimal contextWindowSizewas found by conducting
mock sessions while iterating through various window sizes. It was
found that contextWindowSize of 2 resulted in the most appropriate
responses from GPT-3.5. After including the turn-wise dialogue
history, the final element in the prompt was the emotion prediction
part for the robot’s emotion. This was done by including the text
“Robot: (” as the last line of the prompt. This instructed GPT-3.5
to predict the class number. The second part of the prompt looked
like the following:

Prompt (Part 2) “Human: ⟨ utterance text fromDialogueHistory⟩
Robot: ⟨ utterance text from DialogueHistory⟩ Robot: (”

An example of a complete prompt with contextWindowSize = 2
(two turns) would look like the following:

“This an emotion classifier. The following is a conversation
between a human and a robot. The robot’s emotion is written in
brackets (). The emotion can be either “Happy (1)”, “Sad (2)”,
“Fear (3)”, “Anger (4)”, “Surprise (5)” or “Neutral (6)”. Only
give the emotion class number between 1 - 6”
“Human: What do you think about picture 1? I think it looks
really cool!
Robot: The picture looks like a really beautiful painting to me.
Such an amazing sight. Robot:(”

OpenAI API provides a list of hyperparameters that can be
used to control the behavior of the model during an API call. As
mentioned before, since we wanted to obtain faster output from the
model, we set the “Maximum Length” to 1. “Temperature” was set
to 0, to obtain consistent answers and eliminate any randomness.
We also used the “)” as the “Stop Sequence”, which further fine
tuned the output to only generate the emotion class number as the
output token. Table 1 lists the hyperparameter values used for this
study. Another aspect to consider when using GPT-3.5 for emotion
generation is to determine the instance when emotions need to
be predicted during a conversation. This can differ depending on
the use case/scenario. For our user study (see Section 5), we sent
an API call every time the human participant asked the robot to
share its opinions about the affective images in the game or when
the robot asked the participant to share their opinions. Figure 1
shows the outline of the model used to generate robot emotions
in the user study. It should be noted that contextWindowSize
and the model hyperparameters (see Table 1) might need to be

TABLE 1 Hyperparameter values set in the API call to GPT-3.5 for this study.

Hyperparameter Set value

Maximum length 1

Temperature 0.0

Top P 1.0

Frequency penalty 0.0

Presence penalty 0.0

Stop sequence )

optimized to find the ones that fit the best for other use cases or
scenarios.

4 Hypothesis

Similar to Lammerse et al. (2022), we applied GPT-3.5 to
detect emotions in conversation. However, a key difference
was that we predicted the emotion of the robot based on
the immediate conversational history as context. To successfully
generate contextually appropriate emotional expressions for the
robot, the system has to accurately predict the appropriate emotion,
as well as generate and display the corresponding facial expressions
on the robot’s face. We verify the appropriateness of the robot’s
expressions by evaluating whether participants can recognize and
interpret the expressions on the robot’s face in such a way that they
contribute to a more positive experience of the robot. This was
achieved by contrasting a condition where the robot’s emotions are
generated by our model against two other conditions, where the
emotions are either incongruent with the model’s predictions, or
where the robot does not display any emotions at all.Wehypothesise:

• H1: Participants will have a more positive experience when a
robot displays context appropriate facial expressions, compared
to a robot that does not.

The affective behavior of a robot is known to influence the
behavior of human participants (Gockley et al., 2006; Xu et al., 2014;
Kaushik and Simmons, 2022). Kaushik and Simmons (2022) used a
sorting game where the task was to learn the sorting rule based on
the feedback provided by a robot. It was reported that affective robot
behavior improved the sorting accuracy and lowered the perceived
difficulty of the task. Based on this we hypothesise that:

• H2:Contextually appropriate emotion expressions by the robot
will increase task performance.

5 Study: affective image sorting game

To evaluate if emotion appraisal using GPT-3.5 was effective
and if the emotions expressed by the robot could be perceived
correctly by users, we designed a within-subjects user study with
three conditions. In the control condition [which we call the Neutral
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FIGURE 1
Outline of the model used in this study to generate emotions using GPT-3.5.

(N) condition], the robot did not express any facial expressions at
all. Two experimental conditions were created: Congruent (C) and
Incongruent (I). As the name suggests, in the Congruent condition,
the robot displayed facial expressions that corresponded to the
emotion GPT-3.5 had predicted (for example, if GPT-3.5 predicted
“Happy” then the robot displayed a happy facial expression). In
the Incongruent condition, the robot displayed facial expressions
opposite to the emotions predicted by GPT-3.5. If the predicted
emotion was negative (Sadness, Fear, Anger, Disgust), then the robot
displayed a positive emotion (Happy). Similarly, the robot displayed
a negative emotion (Sadness) when the predicted emotion was
positive (Happy, Surprise). Only the robot’s facial expressions varied
depending on the experimental condition: its face, voice, and other
non-verbal behaviors remained the same across conditions.

The following requirements were taken into consideration while
designing the study:

• The setup should be able to invoke emotional responses from
the participants.
• The setup should not be too immersive or challenging for the

participants.
• The setup should allow for freeform conversation.
• The robot’s expressions should be easy for the participants to

notice

Based on these requirements, we decided to adapt the Card Game
multi-party interaction setup (Skantze et al., 2015). The Card Game
setup is a test-bed designed for studying single and multi-party
interactions between a robot and human participants. It is a
collaborative game where a touchscreen is placed between the robot
and the human participants, on which a set of cards are displayed.
The objective of the game is for the participants to rearrange the
displayed cards in a specific order whilst also having a free form
conversation about the order and the cards both with the robot and
among each other (in case of a multi-party setup).

We used a Furhat robot (Moubayed et al., 2013) for this study.
It is a humanoid robot head with a back-projected face that
allows it to display various facial expressions, brow movements, eye
movements (e.g., eye blinks, gaze), and head gestures (e.g., nodding,
shaking). This enables the robot to convey emotions and engage in
natural, human-like communication, providing a more immersive
and realistic interaction experience for participants. Furhat provides
a wide choice of realistic character faces and voices to choose from.
For this study, we used the “default” character face (which is more
cartoonish than photo-realistic) and Matthew neural TTS voice
from Amazon Polly1. The character and voice were kept the same
across experimental conditions.

A dyadic interaction setup was used where a Furhat robot
and a human participant were seated face to face. A touchscreen
was placed inbetween the robot and the participant such that the
participant could move the images using their fingers and the robot
could follow the images using head gestures and gaze (as shown in
Figure 2). The interactions took place in a closed room where the
participants were alonewith the robot. An experimenter was present
in an adjourning room where they could monitor the experiment.

To invoke emotional responses from the participants, a total of
45 affective images were used in the game (see Section 5.1). The
participants were tasked with sorting the images from the least
positive image to the most positive image based on the emotions
they perceived from them. Each game comprised 3 decks, with each
deck having 5 affective images. The participants were instructed to
play all three decks for each game (irrespective of the order of the
decks). Doing so providedmore opportunities for the participants to
observe the robot’s behavior and counter the novelty effect of playing
a game with a robot for the first time. Participants played a total of 3
games, 1 game for each experimental condition.

1 https://docs.aws.amazon.com/polly/latest/dg/voicelist.html.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1271610
https://docs.aws.amazon.com/polly/latest/dg/voicelist.html
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mishra et al. 10.3389/frobt.2023.1271610

FIGURE 2
Experimental setup for the study.

5.1 Affective image selection

Prior works in psychology such as Lang et al. (1999) have
shown that emotions can be invoked in humans with the help of
visual stimuli such as images. Consequently, there have been many
works such as IAPS Subset (Mikels et al., 2005) and DeepEmotion
(You et al., 2016) that have developed datasets of images that are
mapped to various emotions. As discussed briefly in the previous
section, each deck in the game had 5 images in it and each
condition had 3 decks, which means that we needed 45 images from
the datasets belonging to 5 emotion categories. A key constraint
was to avoid showing very disturbing images to the participants.
Additionally, we wanted to have a good balance between positive
and negative emotion categories in the game, so that it is easier
for the participants to arrange them from least positive to the most
positive images. Thus, we decided to use the emotion categories
Happy/Amusement, Anger, Sadness, Fear, and Awe/Surprise.

During the selection process, we could not find the required
number of images for each category from any one dataset, either
because there were not enough images for each category (for
example, IAPS Subset had only 8 images for Anger) or because there
were disturbing images that we could not use for our study (mainly
for negative emotion categories like Fear). This led us to combine
images from the IAPS Subset (Mikels et al., 2005) and DeepEmotion
(You et al., 2016) datasets for each of the categories. We also added
a few images from the internet that were suitable for use in the
experiment and were deemed to fit the emotion categories. From
this pool of images for the 5 emotion categories, 45 images were
handpicked to be used for the experiment.

5.2 Emotion tagging survey

The final pool of 45 images were a combination of images
selected from the two datasets and images available online. While
the images selected from the datasets for each emotion category
had labels, the images from the internet were selected based on the

author’s perception. It is well known that the perceived emotion from
visual stimuli is highly subjective in nature and varies fromperson to
person (Machajdik and Hanbury, 2010). To ensure that the mapping
between the emotion categories and images remained consistent, we
conducted an online pilot study to map each of the selected images
into an emotion category.

Qualtrics survey software was used to design the online survey.
The participants were shown an image on the screen and asked
to select the emotion category that best matched the image (exact
question asked: “Which emotion do you think the image depicts the
most?”). The 5 emotion categories were displayed as radio buttons.
The order in which the images were shown to the participants
was randomized to account for any order effect. Participants were
recruited using notice boards and social media posts and did not
take part in the later experiment with the robot.

We recorded data from 21 participants (9 male, 11 female,
1 non-binary) with ages ranging between 19 and 48 (M = 29.57,
SD = ±7.55). No compensation was offered for this survey. An
image was assigned to an emotion category if the majority of
the participants had selected that emotion for the image in the
survey. There were cases where no clear selection emerged from
the responses. In such cases, the images were tagged to be multi-
class, i.e., belonging to multiple categories. However, for the image
ordering game, it was necessary to assign one emotion category per
image. We decided the emotion category based on the original class
the image belonged to as per the dataset it was taken from and the
responses from the survey. For example, if image1 had “Happy” as its
assigned emotion in the dataset, and the response from the survey
was something like (0 participants selected Sadness, 1 Fear, 6 Anger,
7 Happy, and 7 selected Surprise), then the final emotion category
for image1 was selected to be “Happy”.

5.3 Image sorting survey

After obtaining the emotion categories for all the 45 images, the
images were divided into 9 groups whichwere to be used as decks for
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the sorting game. Each deck had one image from each of the emotion
categories. Since the game assumes that there is a correct sorting
order (i.e., least positive image to the most positive image), and this
order is by nature very subjective, the emotion tagging survey was
extended to also include an image sorting task. The outcome of this
survey was used as the correct sorting order for the game.

Qualtrics survey software was used to design the sorting task.
Participants were shown 5 images on a screen (1 deck) and asked to
sort them from the least positive to the most positive image. The
exact question asked to the participants was: “Order the following
images from Least Positive to Most Positive based on the emotion that
you think is depicted in the image. You can drag and drop the images
in the desired positions (1 to 5)”. Each image position had a number
displayed by the image and participants had to drag and drop the
images to the correct positions according to their judgment. The
questions were always displayed with the 5 images placed in these
positions in a random order.

The same participants who took part in the emotion tagging
survey (see Section 5.2) were then asked to take part and complete
the ordering survey. The final correct order of images in each deck
was decided based on the order in which most of the participants
were selected. These sorting orders were then used for the final
scoring in the actual card sorting game that another group of
participants played with the robot. The total score for the game was
calculated based on the number of images that were placed in the
correct positions. The perfect score was 5 points, where all the 5
images were placed correctly as per the results from the survey, and
the lowest score was 0 (none of the images were placed in the correct
position).

5.4 Robot’s facial expressions

An important consideration when designing the study was
that the participants should be able to notice the robot’s facial
expressions easily during the game. In order to do so, two things
were implemented. First, whenever the robot discussed the images
or responded to what the participant had shared about the images,
the cards on the display were turned translucent to make it difficult
for the participants to see the images clearly. This was done to
ensure that the participants’ attention was not solely focused on the
touchscreen during the game and that they looked at the robot’s
face. Second, we decided to exaggerate the robot’s facial expressions
somewhat for each of the emotions. This undertaken to make a
clear association between the facial expression displayed by the robot
and the corresponding emotion category. Mäkäräinen et al. (2014)
concluded in their study that in order for humans to perceive a
robot’s emotion with a similar intensity as that of a human, the facial
expressions should be exaggerated.

For each of the 5 emotion categories (see Section 5.1, the
facial expressions of the robot ware implemented using the FACS
(Facial Action Coding system) (Ekman and Friesen, 1978). FACS
is a system developed to assign a common nomenclature to the
individual or group of muscles in the face that are fundamentally
responsible for various facial expressions. These muscles were
named Action Units (AUs), which are identified by a number in
FACS. Ekman and Friesen (1978) provided a list of AUs mapped
to their corresponding muscle/muscle group in the face. EMFACS

TABLE 2 Mapping of FACS Action Units (AU) to emotion categories used in
the study.

Emotion Action units (AU)

Amusement/Happy 6 + 12

Sadness 1 + 4 + 15

Anger 4 + 5 + 7 + 24

Awe/Surprise 1 + 2 + 5 + 26

Fear 1 + 2 + 4 + 5

(Emotional FACS) (Friesen and Ekman, 1983) proposed a mapping
between AUs and the six basic emotions (Ekman et al., 1969). There
have been many works in HRI that have used FACS to interpret
and generate communicative non-verbal behaviors such as facial
expressions related to emotions (Wu et al., 2009; Auflem et al., 2022;
Rossi et al., 2022). Furhat uses Apple’s ARKit for its face model, so
the corresponding ARKit parameters to FACS AUs weremodified to
generate the emotional facial expressions on the robot. Table 2 lists
the mapping of AUs to emotions used for this study [adapted from
Clark et al. (2020)]. All the parameters were set to the maximum
(i.e., 1) to exaggerate the expressions. Figure 3 shows the facial
expressions for each emotion category used in this study.

5.5 Participants

We collected data from a total of 47 participants (22 male and
25 female). The responses from 4 participants were excluded from
the analysis. One participant was 65 years old, which was beyond
the predetermined age range of our experiment (18 - 60). The age
of the participant was not known until after the experiment. The
other three participants did not follow the instructions and focused
only on the touchscreen throughout the experiment. The decision
to exclude their responses was taken after observing their behavior
during the experiment (from a separate room) and post experiment
questions. The post experiment questions revealed that they had not
been able to observe any behaviors on the robot’s face in any of the
conditions. The final pool of 43 participants (24 females, 19 males),
whose responses were included in the analysis, had ages ranging
from 20 to 59 (M = 31.83, SD = ±9.91).

Data collection took place in the labs at two locations,
Max Planck Institution for Psycholinguistics, Nijmegen (MPI) and
the KTH Royal Institute of Technology, Stockholm. For the
data collection at MPI, the participants were recruited using
the Max Planck Institute’s participant database2. A total of 22
participants (17 female and 5 male) were recruited at MPI.
They were compensated €15 on completion. The recruitment
at Stockholm was undertaken using the participant recruitment
website Accindi3 and university notice boards. 21 participants (7

2 https://www.mpi.nl/ppreg.

3 https://www.accindi.se/.
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FIGURE 3
Facial expressions displayed by the robot in this study. The emotions depicted in each of the sub-figures are: (A) Sadness, (B) Fear, (C) Happy, (D) Anger,
(E) Surprise and (F) Neutral.

female and 14male) participated in the study in Stockholm andwere
compensated with 100 SEK gift vouchers for their participation. All
the participants spoke English. The study received approval from
the ethics committee of the Faculty of Social Sciences, Radboud
University, Nijmegen (reference no. ECSW-LT-2023-3-13-98066).

5.6 Process

As discussed earlier, the study followed a within-subjects
paradigm. Each participant played 3 games with the robot, each
game corresponding to one of the three experimental conditions
(see Section 5). Each game comprised 3 decks of affective images.
Participants were asked to play all the three decks (the order
of decks was left for the participant to decide). Each affective
image had a picture name displayed under it as shown in
Figure 4. The participants could move the images by dragging
them on the touchscreen. The order of games (experimental
conditions) were balanced across participants. At the beginning of
the experiment, while describing the experiment to the participants,
the experimenter informed them about the technical limitations of
the interaction, a few of which have been listed below:

• The robot could not hear the participants while it was speaking.
The participants had to wait for the robot to finish speaking
before they could speak.

• The participants had to use the exact names indicated below
the images for the robot to understand which image they were
referring to.

The experiment took approximately 45 min to finish. The
experiment followed the steps given below:

1. The participants were given a description of the experiment, data
management, and compensation by the experimenter. They were
also provided with an information sheet containing the same
information. They were informed that the robot would provide
them with instructions on how to play the game and that the
robot was a collaborator. The participants were instructed to
discuss their opinions with the robot regarding the positioning of
the affective images. They were told that the robot’s opinions may
or may not be correct and they were welcome to disagree with
the robot. A few examples were provided to give the participants
an impression of the capabilities of the robot. For example, they
were informed that they could ask the robot to comment on a
specific image or compare two images. Additionally, they were
informed that the robot could only discuss the images shown on
the touchscreen.

2. The participants were informed that their task was to observe
the behavior of the robot when it was a conversation with
them. They were asked to focus more on the robot during
the interaction and not pay too much attention to the images
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FIGURE 4
An example of a deck of affective images shown to the participants during the game.

on the touchscreen. Once they felt that the images had been
arranged to their satisfaction, they could ask the robot to show
the scores. The scores were subjective and participants were
told they should not worry about the scores. This was done
to ensure that the participants did not feel pressured to score
better, as that might shift their focus away from observing the
robot’s behavior during the game.The participants then provided
their informed consent to participate in the experiment and data
collection.

3. The experimenter then left the room and initiated the game.They
observed the participant through the robot’s camera feed.

4. After the participant had finished playing all the three decks (1
game), the experimenter returned to the room and provided the
participant with the questionnaire on an iPad. The questionnaire
asked about the participant’s impression of the interaction and
the behavior of the robot. It comprised of 12 9-point Likert
scale questions (see Table 3). The order of questions presented
to each participant was randomized to account for any order
effect.

5. Once they had filled out the questionnaire, the experimenter
collected the iPad and initiated the second game, repeating steps
3 and 4.

6. The same process was also followed for the third game.
In addition to the 12 9-point Likert scale questions, the
questionnaire also asked about basic demographic details such
as age, gender, and native language of the particpants.

7. Finally, the participants were asked verbally to choose which
game they thought was the best among the three games, and to
provide a reason for their choice. The exact question asked was
“Which game did you like the most out of the 3? Why did you like
it?”

5.7 Measurements

H1 pertained to the perception of robot’s emotions through its
facial expressions by the participants. To evaluate this, we collected
subjective questionnaire data (Table 3) from the participants that
asked them about their impression of the interaction with the robot
and the robot’s behavior. The questionnaire had 12 9-point Likert
scale questions that were further grouped into 3 dimensions (4
questions per dimension). The dimension, Positive Impression D1
comprised questions that asked the participants how positively they
felt about their conversation with the robot.The questions under the
Emotion Perception D2 dimension tried to measure the perception
of the robot’s emotion expressions by the participants. Finally, the
Human-likeness D3 dimension asked questions pertaining to how
human-like the robot’s behavior was. The responses were analyzed
for each of the dimensions to see if one experimental condition was
preferred over the others. The verbal responses of the participants
for their preferred game was also included in the analysis.

To test H2, which predicted that congruent emotions would
positively affect the task performance of the participants, we used the
final score for each deck in the sorting game as ameasure to evaluate
task performance across the experimental conditions. The correct
order for the affective images in each of the decks was obtained
through the image ordering survey (see Section 5.3). During the
sorting game, after each deck was sorted by the participants, the
final order was scored between 0 to 5 and saved to a log file. A
score of 5 (the perfect score) signified that the participant had
arranged the images presented in the deck in the same order as
the one obtained from the survey. A score of 0 signified that not a
single image position arranged by the participants coincided with
the image positions obtained from the survey.
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TABLE 3 Questionnaire used for subjective evaluation.

Dimension Question

Positive
Impression (D1)

I enjoyed talking with the robot

My conversation with the robot flowed well

I felt positive about my interaction with the robot

I felt comfortable while talking to the robot

Emotion
Perception (D2)

The robot understood what I was talking about

The robot understood what it was talking about

The robot was able to understand and share my feelings

The robot felt emotions

Human-likeness
(D3)

The robot’s face was human-like

The robot’s behavior was human-like

Throughout the conversation, I felt like I could have been
talking to a human

Throughout the conversation, robot’s expressions were
human-like

6 Results

6.1 Questionnaire data analysis

The responses to the 12 questions were analyzed to check the
internal reliability of the questionnaire for the three dimensions.
Cornbach’s alpha was calculated as 0.90, 0.88, and 0.93 for
dimensions D1, D2, and D3 respectively, signalling good internal
consistency. The responses were then analyzed for each of the
dimensions to see if participants rated one condition better than the
others.

For dimensionD1, the responses were analyzed through the use
of an ANOVA test [using JASP (JASP Team, 2023)] to compare the
effect of the experimental condition on the mean ratings. Results
indicated a significant effect of experimental condition on the
mean ratings by the participants (F(2,513) = 11.40, p < 0.001). Post-
hoc Tukey’s test were performed to obtain pair-wise comparisons
of scores under each condition. It was found that participants
rated the Congruent condition significantly higher than the
Incongruent condition (t = 4.67, SE = ±0.205, p < 0.001). We did
not find any significant difference between Neutral and Congruent
conditions (t = 1.47, SE = ±0.205, p = 0.305). Participants also rated
the Neutral condition higher than the Incongruent condition
(t = 3.20, SE = ±0.205, p = 0.004).

Dimension D2 asked questions that tried to measure the
perception of the robot’s emotions by the participants. ANOVA test
results revealed a significant effect of the experimental conditions on
the mean ratings by the participants (F(2,513) = 17.24, p < 0.001).
Pair-wise comparisons using post-hoc Tukey’s test showed that
participants rated the Congruent condition significantly higher than
both the Neutral (t = 4.26, SE = ±0.234, p < 0.001) and Incongruent

(t = 5.63, SE = ±0.205, p < 0.001) conditions. This showed that
participants were able to perceive the context appropriateness of
the robot’s facial expressions. We did not find any significant
difference between themean ratings forNeutral and the Incongruent
conditions (t = 1.36, SE = ±0.234, p < 0.36).

Finally, dimension D3 asked about the human-likeness of the
robot’s behaviors. An ANOVA test was conducted, which showed a
significant effect of the conditions on the ratings (F(2,513) = 13.13,
p < 0.001). Using post-hoc Tukey’s test, it was found that participants
perceived the robot as more human-like under the Congruent
condition compared to theNeutral (t = 2.77, SE = ±0.216, p = 0.016)
and the Incongruent (t = 5.14, SE = ±0.216, p < 0.001) conditions.
The Neutral condition was also rated higher than the Incongruent
condition (t = 2.37, SE = ±0.216, p = 0.048).

A comparison of the mean ratings per condition for each of the
dimensions is shown in Figure 5. The results supported hypothesis
H1, which predicted that the participants would perceive a robot
displaying context appropriate emotions as better than one that does
not display emotions or one that displays incongruent emotions. To
summarize the results from the questionnaire:

• The conversation left a more positive impression in the
Congruent condition compared to the Incongruent condition.
• The emotions expressed by the robot were perceived to be

significantly better in the Congruent condition compared to the
other conditions.
• The robot’s behaviors were perceived to be significantly more

human-like in the Congruent condition compared to the other
conditions.

We also analyzed the verbal responses from the participants
to the post experiment question (see Section 5.7). Of the 43
participants recorded, 23 said that they preferred the Congruent
condition, 15 preferred the Neutral condition, 3 preferred the
Incongruent condition, and 2 could not decide.

6.2 Sorting task score analysis

As mentioned in Section 4, a robot’s emotional expressions
are known to influence final task performance. To verify this,
we analyzed the scores participants obtained during the sorting
game. For each participant, the sorting scores were retrieved for
each experimental condition from the log files. An ANOVA test
was performed to compare the effect of the three experimental
conditions on the final sorting scores. The results indicated that
there was a significant effect of experimental conditions on the
mean sorting scores (F(2,448) = 14.53, p < 0.001). Post-hoc Tukey’s
test revealed that the mean score in the Congruent condition was
significantly higher than both the mean scores in the Neutral
condition (t = 3.67, SE = ±0.162, p < 0.001) and the Incongruent
condition (t = 5.25, SE = ±0.161, p < 0.001), as shown in Figure 6.
We did not find any significant differences between the mean
scores under the Neutral and Incongruent conditions (t = −1.55,
SE = ±0.162, p < 0.266). This showed that task performance was
positively affected by the contextual appropriateness of the robot’s
facial expressions, supporting H2.
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FIGURE 5
Mean ratings by the participants per condition for all the three dimensions in the questionnaire. *** denotes p < 0.001 and * denotes p < 0.05.

FIGURE 6
Sorting scores under different experimental conditions. *** denotes
p < 0.001.

6.3 Exploratory analysis

We also wanted to see if any trends emerged through
an exploratory analysis of the questionnaire response data.
Additionally, we were interested in analyzing the GPT-3.5
predictions during the interactions.

6.3.1 Effect of condition order
To evaluate the overall perception of the participants towards

the robot’s facial expressions, a GLMM (Generalized Linear Mixed
Model) was fitted. The participants’ ratings for all the questions
were used as the dependent variable. Experimental conditions and
the order they were presented to each participant were used as the
fixed effects variables. The participant IDs along with the question

numbers were used as the random effects grouping factors. Inverse
Gaussian family was used as the model family.

The model showed a significant main effect of experimental
condition on the user ratings (χ2(2) = 59.94, p < 0.001). Post-
hoc pairwise comparisons using Bonferroni correction, showed
that participants rated the Congruent (C) condition significantly
higher than both Neutral (N) (t = 4.94, SE = ±0.128, p < 0.001) and
Incongruent (I) (t = 8.81, SE = ±0.128, p < 0.001) conditions. The
ratings for N were also significantly higher than the ratings for I
(t = 3.87, SE = ±0.128, p < 0.001).This further supported hypothesis
H1 that predicted that participants will perceive a robot with context
appropriate facial expressions better than others.

We also observe an interaction effect between condition and
order on the question ratings (χ2(4) = 15.63, p = 0.004). This
suggested that the participants’ ratings under each condition varied
depending on the order in which the conditions were presented
to them. Figure 7 shows the difference in participants’ ratings per
condition depending on the order.The order inwhich the conditions
were presented to the participants followed the following sequence:

• Order 1: C→ N→ I
• Order 2: N→ I→ C
• Order 3: I→ C→ N

Figure 7 indicates that for Order 1 and Order 3 the mean
ratings were highest for the Congruent condition, followed by
the Neutral and Incongruent conditions. In contract, in Order
B, even though the Congruent condition was rated the highest,
Neutral and Incongruent conditions did not have much difference.
This might be attributed to the fact that in Order 2 participants
first interacted under the Neutral condition for which no facial
expressions displayed by the robot. That was followed by the
Incongruent condition, which had mismatched facial expressions
so the ratings were still similar compared to Neutral. Finally, the
ratings increased when the robot expressed context appropriate
expressions under the Congruent condition, which further shows
that participants were able to perceive the robot’s emotions and
preferred the Congruent condition.
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FIGURE 7
Participants’ mean ratings per condition depending on the order they
were presented.

6.3.2 Impact of location or gender?
Since the data collection took place in two locations, Stockholm

andNijmegen (see Section 5.5), wewere curious to see if the location
had any effect on the subjective ratings provided by the participants.
A GLMM was fitted with participants’ ratings as the dependent
variable, and experimental conditions, order, and location as the
fixed effects variables.The participant IDs and the question numbers
were used as the random effects grouping factors. The inverse
Gaussian family was used as the model family.

As expected, the model showed a significant main effect
of experimental condition on the user ratings (χ2(2) = 60.53,
p < 0.001). In addition to the interaction effect between condition
and order, the model also showed the interaction effect between
condition and location (χ2(2) = 6.91, p = 0.032). This suggested
that the participants’ ratings under each condition also varied
depending on the location where the experiment took place, as
shown in Figure 8. However, on further analyzing the participant
distribution between the two locations, we observed that gender
distribution at both locations was very extreme. In Nijmegen,
out of the 22 participants recorded, there were 17 female and 5
male; whereas, in Stockholm, out of the 21 participants recorded,
there were 7 female and 14 male. This led us to wonder if the
interaction effect that we observed earlier was due to gender instead
of location.

To investigate this, we fitted another GLMM with the same
variables as the previous one but in this instance we changed the
fixed effects variable from location to gender. The model showed
the significant main effect of condition on the ratings, as expected
(χ2(2) = 60.39, p < 0.001), and also an interaction effect of condition
and order. However, we also found an interaction effect between
condition and gender (χ2(2) = 13.56, p = 0.001). This indicates that
ratings per condition were also influenced by the gender of the
participants, as shown in Figure 9. This was an interesting finding

as it has been observed in prior studies that gender has an influence
on the perception of emotional intelligence in robots (Chita-
Tegmark et al., 2019). However, since we did not control for either
gender or location, there might have been other factors that might
have influenced this behavior. Further studies are needed to narrow
down and verify any effect of gender or location on the perception
of robot emotions.

6.3.3 GPT-3.5 emotion prediction
The results indicated that participants were able to perceive

the context appropriateness of the robot’s model-driven facial
expressions. This implied that GPT-3.5 was able to reliably predict
the emotions for the robot. In addition, we wanted to analyze
the emotion predictions made by GPT-3.5 during the interactions,
compared to the ground truth label for the picture being discussed
(see Section 5.2). It should be stressed that this analysis is limited,
given that the emotion appraisal label was not based on the image
itself, but the preceding dialogue. Thus, the dialogue might in many
cases express a different emotion or be neutral. Nevertheless, this
analysis might give an overall idea of how often the emotion of the
picture and the emotion appraisal aligned.

A prediction confusion matrix was calculated for each emotion
category using the predicted vs. the actual image labels (ground
truth), as shown in Figure 10. The GPT-3.5 predicted aligned
emotion categories consistently, with the best performance for
“Surprise” (65%) and worst for “Anger” (41%). Overall, GPT-3.5
predicted the emotion category to be “Neutral” for about 17.6% of
the cases.

7 Discussion and limitations

Theresults suggest that theGPT-3.5modelwas able to accurately
predict the emotions for the robot’s utterances across all the
experimental conditions. This highlights the model’s capability in
generating contextually appropriate emotional responses, which
is crucial for effective and engaging human-robot interactions.
Analysis of the questionnaire responses indicated that participants
favored the Congruent condition over the other experimental
conditions, as expected. The exploratory analysis of the responses
further corroborated these findings. This preference for the
Congruent condition suggests that emotional congruency between
the robot’s expressions and its verbal responses enhances user
experience and perceived emotional authenticity, contributing
to more positive interaction outcomes, which supports H1.
Furthermore, the ANOVA results revealed that participants
achieved the highest sorting scores in the Congruent condition,
followed by the Neutral and Incongruent conditions. This
indicates that appropriate robot expressions positively influence
task engagement and overall performance (H2), underscoring
the significance of emotion-appropriate responses in facilitating
effective human-robot collaboration.

We did not find any significant differences between the Neutral
and the Incongruent conditions from the questionnaire responses.
The post experiment verbal responses showed that participants
occasionally attributed more complex meanings to the robot’s
emotions. For example, in the Incongruent conditionwhen the robot
displayed a happy facial expression when discussing a sad picture,
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FIGURE 8
Effect of condition and location on subjective responses by the participants.

FIGURE 9
Effect of gender on the subjective ratings per condition.

one of the participants commented “I think the robot was feeling so
sad that it was covering it by smiling. I do the same”. In some cases,
participants also inferred the facial expressions beyond the basic
emotions used in this study (e.g., interpreting happy expressions in
the Incongruent condition as sarcasm). On the other hand, in the
Neutral condition, due to the lack of any facial expressions by the
robot, there were no conflicting stimuli for the participants, which
was perceived as appropriate behavior for a robot. We believe that
these factors might have led to the lack of significant differences
between the Neutral and the Incongruent experimental conditions.
A recent study by Clark and Fischer (2023) argued that social

robots are perceived by humans as a depiction of social agents. The
emotions that the robot displays are perceived as not being felt by
the robot, but by the character that the robot is portraying. This
aspect warrants further exploration to better understand the human
tendency to anthropomorphize robots and its implications on the
perception of robot emotions.

A technical limitation was that we occasionally observed a
slight lag in the robot’s expressions during the interaction. This was
attributed to the API call during emotion generation. While the
typical response time from the GPT-3.5 service was ≤ 1 s, it could
in some cases take more than 2-4 s to receive a response, due to
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FIGURE 10
Normalized Confusion matrix between actual and predicted emotions by GPT-3.5. H-“Happy”, Sa-“Sadness”, F-“Fear”, A-“Anger”, “Su”-“Surprise”,
N-“Neutral”.

server lags, which delayed the emotion generation on the robot’s
face. In rare cases, GPT-3.5 was unable to return any response due to
server overload. As cloud services continue to improve, such delays
and errors are expected to diminish, leading to more seamless and
natural interactions in real-time.

Even though GPT-3.5 predicted the emotions of the robot
reliably, fine-tuning a model on more specific datasets may yield
even better contextually relevant emotional responses. Additionally,
while we restricted the emotions in this study to the basic emotions,
participants attributed emotions beyond these basic categories to
the robot’s expressions. Future studies should incorporate a broader
range of emotions to better align with human emotional complexity
and facilitate more nuanced interactions. Another limitation is that
the model could not generate long term emotional responses due
to its context window size being restricted to just 2 past turns.
While a larger window size could have taken more turns (there by
more information) into the context, GPT-3.5 has a limit of 4,097
tokens per prompt. This makes it very difficult to keep track of the
events that have taken place during a prolonged interaction and
use it to generate any long term emotions that may develop over
time.

The current model only utilized the textual representation of
the conversational speech for emotion generation in the robot. To
develop amore holistic andmultimodal emotion generation system,
future research should consider integrating other modalities, such
as facial expressions and body language into the architecture. This
would of course need advancement in LLMs that take multi-modal
information as input. For example, GPT-4 (OpenAI, 2023) is the
latestmodel fromOpenAI that is capable of taking text and images as
inputs to generate text. As LLMs advance further, their applicability

in modelling multi-modal emotion generation systems will likely
become easier and more effective.

8 Conclusion

This study proposed and implemented a model to leverage
LLMs for real-time robot emotion generation in HRI. By
framing emotion appraisal as an ERC task, we utilized GPT-
3.5 to accurately predict the emotions of a robot based on
ongoing dialogue history. We conducted a within-subjects user
study to evaluate the effectiveness of the implemented model.
The study was designed to elicit emotional responses from
participants, which made it possible to have an affective HRI.
GPT-3.5 was able to reliably predict context appropriate emotions
for the robot. The results showed that participants perceived
the Congruent condition to be significantly more human-like,
emotionally appropriate and positive than the others, indicating
that alignment between the robot’s expressions and verbal responses
significantly enhances the perceived emotional authenticity and
creates interaction outcomes that are largely positive. Additionally,
the study also found that the participants scored highest under
the Congruent condition, further supporting the significance of
emotion-appropriate responses in fostering effective human-robot
collaboration.

This research explored the possibility of using LLMs in real-
time HRI tasks beyond generating robot speech. Using cloud
services and leveraging powerful pre-trained models to address
complex HRI problems may be the next step forward. As language
models and robotics technologies continue to evolve, our work
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contributes to the broader pursuit of creating more empathetic,
socially aware, and emotionally connected robots that seamlessly
integrate into human environments, ultimately enhancing our
everyday lives.
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